Diversity and aboveground biomass of lianas in the tropical seasonal rain forests of Xishuangbanna, SW China.
نویسندگان
چکیده
Lianas are important components of tropical forests and have significant impacts on the diversity, structure and dynamics of tropical forests. The present study documented the liana flora in a Chinese tropical region. Species richness, abundance, size-class distribution and spatial patterns of lianas were investigated in three 1-ha plots in tropical seasonal rain forests in Xishuangbanna, SW China. All lianas with > or = 2 cm diameter at breast height (dbh) were measured, tagged and identified. A total of 458 liana stems belonging to 95 species (ranging from 38 to 50 species/ha), 59 genera and 32 families were recorded in the three plots. The most well-represented families were Loganiaceae, Annonceae, Papilionaceae, Apocynaceae and Rhamnaceae. Papilionaceae (14 species recorded) was the most important family in the study forests. The population density, basal area and importance value index (IVI) varied greatly across the three plots. Strychnos cathayensis, Byttneria grandifolia and Bousigonia mekongensis were the dominant species in terms of IVI across the three plots. The mean aboveground biomass of lianas (3 396 kg/ha) accounted for 1.4% of the total community above-ground biomass. The abundance, diversity and biomass of lianas in Xishuangbanna tropical seasonal rain forests are lower than those in tropical moist and wet forests, but higher than those in tropical dry forests. This study provides new data on lianas from a geographical region that has been little-studied. Our findings emphasize that other factors beyond the amount and seasonality of precipitation should be included when considering the liana abundance patterns across scales.
منابع مشابه
Diversity and composition of understory vegetation in the tropical seasonal rain forest of Xishuangbanna, SW China.
Tropical forests vegetation and community research have tended to focus on the tree component, and limited attention has been paid to understory vegetation. Species diversity and composition of the understory of tropical seasonal rain forest were inventoried in a 625 m2 area (for sapling layer) and a 100 m2 area (for herb/seedling layer) in three 1 ha plots. We found 3068 individuals belonging ...
متن کاملDiversity of Cultivable Actinomycetes in Tropical Rainy Forest of Xishuangbanna, China
In order to obtain much more un-known actinomycetes for discovering new drug lead, one hundred soil samples were collected from five national natural protection areas of tropical rain forests, Mengla, Menglun, Mandian, Xiaomengyang and Guanping, in Xishuangbanna, Yunnan, China. 1652 purified cultures of actinobacteria were isolated from these samples by using 5 media. The 16S rRNA gene sequence...
متن کاملContrasting nitrogen and phosphorus resorption efficiencies in trees and lianas from a tropical montane rain forest in Xishuangbanna, south-west China
Tropical montane rain forest is widely considered to be a highly threatened hotspot of global diversity (Brummitt & Nic Lughadha 2003), and one of the least understood humid tropical forest ecosystems in terms of nutrient cycling (Bruijnzeel & Proctor 1995). There is, therefore,anurgentneedto improveourunderstandingof nutrient cyclingprocesses in this ecosystem, including the absorption of nutr...
متن کاملSoil phosphorus heterogeneity promotes tree species diversity and phylogenetic clustering in a tropical seasonal rainforest
The niche theory predicts that environmental heterogeneity and species diversity are positively correlated in tropical forests, whereas the neutral theory suggests that stochastic processes are more important in determining species diversity. This study sought to investigate the effects of soil nutrient (nitrogen and phosphorus) heterogeneity on tree species diversity in the Xishuangbanna tropi...
متن کاملLiana Impacts on Carbon Cycling, Storage and Sequestration in Tropical Forests
Mature tropical forests sequester large quantities of atmospheric CO2, which they store as plant biomass. These forests are changing however, including an increase in liana abundance and biomass over recent decades in Neotropical forests. We ask here how this increase in lianas might impact the tropical forest carbon cycle and their capacity for carbon storage and sequestration. Lianas reduce t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Revista de biologia tropical
دوره 57 1-2 شماره
صفحات -
تاریخ انتشار 2009